V(3rd Sm.)-Chemistry-H/CC-7/CBCS

2021

CHEMISTRY — HONOURS

Paper : CC-7

(Organic Chemistry)

Full Marks : 50

The figures in the margin indicate full marks. Candidates are required to give their answers in their own words as far as practicable.

Answer question number 1 (compulsory) and any eight (08) questions from the rest (from question number 2 to question number 12).

1. Answer *any ten* questions :

1×10

- (a) Give the structural formula for the alkene that gives one mole of glyoxal and two moles of acetone after ozonolysis.
- (b) Identify the product $[\underline{A}]$.

$$\underbrace{\text{BH}_3/\text{THF}}_{\text{H}_2\text{O}_2/\text{NaOH}} \rightarrow [\underline{A}]$$

(c) Identify the alkene [B].

(d) Write the suitable reagent for the following transformation :

(e) Identify $[\underline{C}]$ and $[\underline{D}]$.

Please Turn Over

V(3rd Sm.)-Chemistry-H/CC-7/CBCS

(2)

- (f) Prepare (\underline{E}) -2-butene from 2-butyne.
- (g) $R^{1}CHO$ reacts with PhNHNH₂ to form the corresponding phenylhydrazone. What pH is suitable for this reaction?
- (h) $Ph_3P CH_2$ on reaction with RCH = O forms RCH = CH₂ (alkene), whereas $Me_2S CH_2$

on treatment with RCH = O forms the compound RCH - CH₂ (epoxide). Explain.

(i) What will be the order of nucleophilic addition to the following carbonyl compounds?

HCHO, CH₃CHO, CH₃COCH₃

- (j) Write down the products of addition of HBr to
 - (i) $O_2N CH = CH_2$
 - (ii) Br CH = CH_2
- (k) CH_3COCH_3 can be reduced to $CH_3CH_2CH_3$ in almost neutral condition *via* thicketal. Give the method.
- (1) $Ph_3P = CHOMe$ on treatment with $CH_3CH = O$ gives $CH_3CH = CHOMe$, which on acid hydrolysis gives CH_3CH_2CHO . Give the mechanism of hydrolysis.
- 2. (a) Predict the product with plausible mechanism :

(i)
$$Ph \longrightarrow C \longrightarrow CHO + NaOH \longrightarrow$$

- (ii) $(CH_3)_3C \longrightarrow CHO + NaOH \longrightarrow$
- (b) Benzoin (PhCHOHCOPh) on treatment with alcoholic KCN in presence of *p*-nitrobenzaldehyde gives another benzoin. Explain. 3+2

$$CH_3 - C - CH_2CH_3 + I_2 + AcOH \longrightarrow [\underline{F}]$$

Show the mechanism of formation of $[\underline{E}]$ and $[\underline{F}]$.

(3)

(V(3rd Sm.)-Chemistry-H/CC-7/CBCS

- 4. (a) How can you obtain 100% CH₃CH(OH)—CH—CHO from CH₃CHO and CH₃CH₂CHO? CH₃
 - (b) Write down the products of the following reactions :

$$CH_{3} CO CH_{3} + Na + EtOH \longrightarrow [\underline{G}]$$

$$CH_{3} CO CH_{3} \xrightarrow{(i) Mg \text{ in dry benzene}} [\underline{H}] \qquad 3+2$$

- 5. (a) Predict the products with plausible mechanism :
 - (i) R¹COR² + Al- *iso*propoxide in isopropanol :
 COOEt
 (ii) (CH₂)₄ + NaOEt
 COOEt
 - (b) The compound $\begin{array}{c} H_3C \\ C \\ H_3C \end{array}$ in presence of H_2SO_4 gives α , β -unsaturated carbonyl compound. $H_3C \\ C \equiv CH \end{array}$

Explain the reaction with mechanism.

6. (a) Predict the products with plausible mechanism :

(i)
$$CH_3 \longrightarrow \overset{O}{C} \longrightarrow CH_3 \longrightarrow Dilute HNO_2$$

(ii) $CH_3CH_2 \longrightarrow \overset{O}{C} \longrightarrow CH_3 \longrightarrow Dilute HNO_2$

(b) Which product do you expect when *trans*-2-butene is treated with CH₂I₂ and Zn–Cu couple? 3+2 OH

7. (a)
$$+ Br_2 - H_2O \longrightarrow 2, 4, 6$$
 -Tribromophenol
COOH

What kind of substitution is involved at *p*-position of the abovesaid reaction?

Please Turn Over

8. (a) Show the product of the reaction along with plausible mechanisms for both the steps :

(b)
$$CH_3CH_2 \longrightarrow \overset{O}{\overset{\parallel}{C}} - CH_3 + SeO_2 \xrightarrow{Acidic medium (H^{\oplus})}$$

Predict the product and show the mechanism.

9. (a) Show the steps of the transformation shown below.

(b) Predict the products of the following transformations :

10. (a) Explain with mechanism, the formation of products in the following transformations :

3+2

(b) Predict the product with plausible mechanism of the following reaction :

11. (a) Identify the products $[\underline{K}]$ and $[\underline{L}]$ of the following reactions with mechanism.

(b) Carry out the following transformation :

12. (a) Give the mechanism of the following transformation :

(b) Carry out the following transformation :

$$Br - CH_2 - CH_2CHO \longrightarrow Et - C \equiv C - CH_2 - CH_2 - CHO \qquad 3+2$$

Ph

(5)